Simple detection of circulating cancer cells using gold nanoparticles
Circulating tumor cells (CTCs) are traveling cells in physiological fluids that are released from a main tumor or from metastasis. CTC quantification is of great interest for evaluating cancer dissemination, predicting patient prognosis, and also for the evaluation of therapeutic treatments representing a reliable potential alternative to invasive biopsies and subsequent proteomic and functional genetic analysis. In fact, isolation of CTCs from peripheral blood, as a "liquid biopsy", is expected to be able to complement conventional tissue biopsies of metastatic tumors for therapy guidance. A particularly important aspect of a "liquid biopsy" is that it is safe and can be performed frequently, because repeated invasive procedures may be responsible for limited sample accessibility. The main techniques reported for CTC detection consist in their labeling with tagged antibodies (immunocytometry) followed by fluorescence analysis or the detection of the expression of tumor markers by reverse-transcriptase polymerase chain reaction (RT-PCR). However, the required previous isolation of CTCs from the human fluids is limited to complex analytic approaches that often result in a low yield and purity. Merkoçi's groups in collaboration with colleagues at UAB have achieved a novel and rapid and simple detection of cancer circulating cells using gold nanoparticles (AuNP). The electrochemical detection and the characterization results demonstrate that this method is selective to Caco2 CTC and that the electrochemical signal is not affected by the presence of other circulating cells. The achieved detection is selective for the target tumor cells and can exclude the false positive results. The main advantages of the presented method compared with the already reported for CTC detection rely on the sensitive and quantitative electrochemical detection technique used in addition to the excellent properties of the AuNPs labels. The sensitivity, simplicity, low cost, easy-to-use mode, and miniaturization/portability of the electrochemical detection system make it ideal for point-of-care applications.