Gorostiza Langa, Pau
ICREA Research Professor at Institut de Bioenginyeria de Catalunya (IBEC).
Life & Medical Sciences
Short biography
Pau Gorostiza graduated in physics at the University of Barcelona (UB), where he obtained his PhD (European Doctorate) in the field of semiconductor electrochemistry. He worked at the UB microscopy facility in AFM and STM of biological samples, and in nanotechnology for materials science. He visited the CNRS - Université Pierre et Marie Curie (France), and the University of California at Berkeley (USA). He is currently ICREA Research Professor at the Institute for Bioengineering of Catalonia (Barcelona Institute of Science and Technology), where he develops photoswitchable ligands of neuronal proteins and studies charge transport in redox proteins and photosynthetic complexes using electrochemical tunneling microscopy and spectroscopy and force microscopy. He has published more than 130 articles (6500 citations, h-index 42) and holds 7 patents (5 licensed). He has supervised 11 postdoctoral fellows and 13 PhD students (7 ongoing).
Research interests
Research in the laboratory focuses on developing nanoscale tools to study biological systems. These tools include instrumentation based on proximity probes, such as electrochemical tunnelling microscopy and spectroscopy, that we apply to investigate electron transfer in individual redox proteins, and other biophysical and biochemical interactions. These studies are relevant to the development of biosensors and molecular electronics devices, and have led to the discovery of long-distance electrochemically gated electron transport between partner proteins of the respiratory and photosynthetic chains. Another set of nanotools that we are developing is based on engineered molecular actuators that can be switched with light, such as azobenzene, which can be chemically attached to biomolecules in order to remotely control their activity (photopharmacology). Among other developments, we have demonstrated two- and three-photon pharmacology to manipulate the activity of neurons in vivo.